Midterm exam Calculus-3 (10 points for free)

Problem 1 Suppose that $\sum_{n-1}^{\infty} a_{n}\left(a_{n} \neq 0\right)$ is known to be a convergent (10 points) series. Prove that $\sum_{n-1}^{\infty} 1 / a_{n}$ is a divergent series.

Problem 2 (a, 5 points) Calculate the limit $\lim _{n \rightarrow \infty}\left\{\left(\sin \frac{1}{n^{3}}\right) /\left(\frac{1}{n^{3}}\right)\right\}=$?
(b, 10 points) Is the series $\sum_{n=1}^{+\infty} \sin \frac{1}{n^{3}} \quad$ convergent?

Problem 3
(15 points) \quad Consider the series $\quad \sum_{n=1}^{\infty} \frac{(5 x-4)^{n}}{n^{3}}$
For which values of x is the series convergent ?

Problem 4 (10 points) (a: 10 points) Find the value of $\mathrm{c}=\mathrm{c}(\mathrm{D})$ for which $\sum_{n=0}^{+\infty} e^{n c}=D(>1)$

Problem 5 (10 points) For the function $f_{n}(x)=\frac{4}{\left(x^{2}+1\right) n^{6}} \quad$ with $\mathrm{x} \in(-\infty,+\infty)$
(a: 3 points) Determine the pointwise limit $\lim _{n \rightarrow+\infty} f_{n}(x)=$?
(b: 7 points) check if $f_{n}(x)$ is uniform convergent

Problem 6 Suppose a spring has mass m and spring constant k and let (30 points) $\omega=\sqrt{k / m}$. Suppose that the damping constant is so small that the damping force is negligible. If an external force $F(t)=F_{0} \cos \omega_{0} t$ is applied, where $\omega_{0} \neq \omega$,

Equation of motion: $\quad m \frac{d^{2} x}{d t^{2}}+c \frac{d x}{d t}+k x=F(t)$

Show that in absence of damping ($\mathbf{c = 0} \mathbf{0}$) the motion is described by:

$$
x(t)=c_{1} \cos \omega t+c_{2} \sin \omega t+\frac{F_{0}}{m\left(\omega^{2}-\omega_{0}^{2}\right)} \cos \omega_{0} t
$$

