Midterm exam Calculus-3 (10 points for free)

Problem 1 Suppose that $\sum_{n=1}^{\infty} a_n (a_n \neq 0)$ is known to be a convergent (10 points) Series. Prove that $\sum_{n=1}^{\infty} 1/a_n$ is a divergent series.

Problem 2 (15 points) (a, 5 points) Calculate the limit $\lim_{n\to\infty} \left\{ \left(\sin \frac{1}{n^3} \right) / \left(\frac{1}{n^3} \right) \right\} = ?$

(b, 10 points) Is the series
$$\sum_{n=1}^{+\infty} \sin rac{1}{n^3}$$
 convergent?

Problem 3 Consider the series
$$\sum_{n=1}^{\infty} \frac{(5x-4)^n}{n^3}$$
 (15 points)

For which values of x is the series convergent ?

Problem 4 (a: 10 points) Find the value of c=c(D) for which $\sum_{n=0}^{+\infty} e^{nc} = D$ (>1)

Problem 5 For the function
$$f_n(x) = \frac{4}{(x^2 + 1)n^6}$$
 with $x \in (-\infty, +\infty)$
(10 points)

(a: 3 points) Determine the pointwise limit $\lim_{n \to +\infty} f_n(x) = ?$

(b: 7 points) check if $f_n(x)$ is uniform convergent

Problem 6 (30 points)

Suppose a spring has mass *m* and spring constant *k* and let $\omega = \sqrt{k/m}$. Suppose that the damping constant is so small that the damping force is negligible. If an external force $F(t) = F_0 \cos \omega_0 t$ is applied, where $\omega_0 \neq \omega$,

Equation of motion:
$$m \frac{d^2x}{dt^2} + c \frac{dx}{dt} + kx = F(t)$$

Show that in absence of damping (**c=0**) the motion is described by:

$$x(t) = c_1 \cos \omega t + c_2 \sin \omega t + \frac{F_0}{m(\omega^2 - \omega_0^2)} \cos \omega_0 t$$